viernes, 25 de mayo de 2018

La importancia de la levadura sintética para el futuro de la humanidad

La investigación está recreando artificialmente los 16 cromosomas del hongo unicelular responsable de la cerveza. Su éxito podría conducir a algas de diseño que producen combustible, órganos a prueba de enfermedades e incluso la resurrección de especies extintas.

La relación entre el Homo sapiens y el hongo unicelular​ Saccharomyces cerevisiae, más conocido como levadura de cerveza, se remonta como mínimo a los sumerios. Los humanos descubrieron que podían aprovecharse de una especie microscópica a través de la fermentación. En la actualidad, las células de levadura se han vuelto expertas en la producción de etanol e insulina, y son el caballo de batalla de los laboratorios de investigación.

Pero esto no significa que el S. cerevisiae no pueda mejorarse aún más, o al menos eso es lo que está intentando Jef Boeke. El director del Instituto de Genética de Sistemas de la Universidad Langone Health en Nueva York (EE. UU.) dirige un equipo internacional de cientos de personas, cuyo objetivo consiste en sintetizar las 12,5 millones de letras genéticas que componen el genoma de las células de levadura.


Para ello, deben reemplazar cada uno de los 16 cromosomas de la levadura por ADN sintético producido en sintetizadores químicos del tamaño de una estufa. Poco a poco, Boeke y su equipo, que procede de casi una 12 de instituciones distintas, están modernizando el genoma de la levadura y asegurándolo para que los investigadores puedan juguetear con sus genes. Al final, la levadura sintética, llamada Sc2.0, debería ser 100% personalizable.


Boeke afirma: "En los próximos 10 años, la biología sintética producirá todo tipo de compuestos y materiales con microorganismos. Esperamos que nuestra levadura juegue un papel importante en este cambio".

El proyecto podría compararse con el del primer auto fabricado por Henry Ford: hecho a mano y el único de su clase. Pero gracias a él, algún día podríamos diseñar genomas en la pantalla de un ordenador de forma rutinaria. En lugar de diseñar o editar el ADN original de un organismo, imprimir una copia nueva podría resultar más fácil. Imagine algas de diseño que producen combustible; órganos a prueba de enfermedades; o incluso, especies extintas que vuelven a la vida. "Esto podría ser más importante que la revolución espacial y la informática", opina el experto en genómica de la Escuela de Medicina de Harvard (EE. UU.), George Church.


Vídeo: Un vídeo producido por la Universidad de Nueva York describe el análisis de la levadura con ADN parcialmente sintético. DOCTORBEE54 | Youtube

Los investigadores ya han conseguido sintetizar las instrucciones genéticas que operan a virus y bacterias. Pero las células de levadura son eucarióticas, lo que significa que sus genomas están encerrados dentro del núcleo celular y agrupados en forma de cromosomas, igual que los de los humanos. Sus genomas son también mucho más grandes, lo que complica la tarea, ya que sintetizar ADN es mucho más caro que leerlo.

Actualmente se puede secuenciar un genoma humano por unos 800 euros, y el precio sigue bajando. En comparación, para reemplazar cada letra de ADN en la levadura, Boeke tendrá que gastarse unos 1,2 millones de euros. A ese coste hay que añadir la mano de obra y los gastos informáticos, por lo que el coste total del proyecto, que lleva en marcha desde hace una década, será considerablemente mayor.

Junto a Church y otros investigadores, Boek lidera la organización GP-write, que de defensa de la investigación internacional centrada en reducir el coste del diseño, la ingeniería y los análisis genómicos por un factor de 1.000 durante la próxima década. Boeke detalla: "Tenemos toda clase de desafíos como especie en este planeta, y la biología podría tener un gran impacto en ellos. Pero para ello necesitamos reducir los costes".

Fuente: Technologyreview

jueves, 24 de mayo de 2018

Un proceso cuántico convierte en electricidad la radiación infrarroja

Científicos saudíes han encontrado la forma de obtener electricidad a través de la radiación infrarroja que emite el planeta. Se han valido de nano-antenas que usan el efecto túnel cuántico para que los electrones puedan traspasar un diodo y transformar las ondas infrarrojas en corriente eléctrica. Un prototipo que puede revolucionar el sector energético.


La mayoría de la luz solar que golpea la Tierra es absorbida por sus superficies, océanos y atmósfera. Como resultado de este calentamiento, la radiación infrarroja se emite constantemente a nuestro alrededor. 

Estimada en millones de gigavatios por segundo, esta radiación infrarroja residual es capaz de abastecer la demanda energética de la humanidad miles de veces. 

Un equipo de Universidad de Ciencia y Tecnología Rey Abdalá, en Arabia Saudita,  ha desarrollado un dispositivo que puede aprovechar esta energía, así como el calor residual de los procesos industriales, y transformarla  en electricidad útil. 

A diferencia de los paneles solares que están limitados por las horas del día y las condiciones climáticas, el calor infrarrojo puede ser recogido las 24 horas del día. Una forma de lograrlo es tratar el exceso de calor infrarrojo como ondas electromagnéticas de alta frecuencia. 

Utilizando antenas diseñadas específicamente para esta investigación, las ondas electromagnéticas recogidas se envían a un rectificador, típicamente un diodo semiconductor, que convierte las señales alternas en carga de corriente continua para baterías o dispositivos eléctricos. 

Efecto túnel 

El proceso se consigue mediante la fabricación de una rectenna o rectena, (rectifying antenna  o antena rectificadora), un tipo especial de antena que se usa para convertir directamente microondas en corriente continua. En esta investigación, como la longitud de las ondas infrarrojas es extremadamente corta, para poder aprovecharlas fue necesario construir rectenas realmente minúsculas. 

Además, las ondas infrarrojas oscilan miles de veces más rápido que un semiconductor típico. "No hay ningún diodo comercial en el mundo que pueda funcionar con tanta frecuencia", explica Atif Shamim, líder de proyecto de KAUST, en un comunicado. Por eso han recurrido al efecto túnel. 

El efecto túnel es un fenómeno cuántico que permite a una partícula superar una barrera que en teoría no podría traspasar por falta de capacidad. Por ejemplo, una bala disparada desde la base de una montaña necesita una cierta cantidad de energía para llegar a la cúspide y llegar al otro lado. Pero una bala cuántica no: puede llegar al otro lado de la montaña gracias a la indeterminación de su posición, que es la base de cualquier fenómeno cuántico. 
Pues ese efecto túnel, según los investigadores, puede ayudar a la construcción de las citadas antenas nanométricas y obtener energía de la naturaleza: los electrones pueden atravesar una pequeña barrera, gracias a un diodo regido por el efecto túnel (Metal-Insulator-Metal), y transformar las ondas infrarrojas en corriente eléctrica.

Nano-antena con diodo 

Lo han comprobado construyendo una nano-antena en forma de mariposa que incorpora una película aislante muy delgada entre dos brazos metálicos ligeramente recubiertos de oro y titanio. 

El invento es capaz de generar campos eléctricos intensos, necesarios para el buen funcionamiento de la nano-antena. El diodo MIM ha capturado con éxito la radiación infrarroja y sólo se enciende cuando es necesario. 

Y aunque de momento sólo se trata de una etapa del proceso innovador superada con éxito, todavía quedan muchos problemas técnicos por resolver antes de que pueda confirmarse la viabilidad del dispositivo. 

Uno de los problemas a resolver es que consume mucha energía, pero si las investigaciones se desarrollan según lo previsto, será posible conectar millones de micro-antenas para aumentar la producción de electricidad en un país o una región. Toda una revolución para el sector energético. 

Fuente: tendencias21